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1 Introduction

1.1 Ostrowski Type Inequalities

Comparison between functions and integral means are incorporated in Ostrowski type inequalities
as follows.

The first result in this direction is due to Ostrowski [38].

Theorem 1.1. Let f : [a, b] → R be a differentiable function on (a, b) with the property that
|f ′ (t)| ≤M for all t ∈ (a, b). Then∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a)M (1.1)

for all x ∈ [a, b].
The constant 1

4 is the best possible in the sense that it cannot be replaced by a smaller quantity.

The following results for absolutely continuous functions hold (see [29] – [31]).

Theorem 1.2. Let f : [a, b] → R be absolutely continuous on [a, b]. Then, for all x ∈ [a, b], we
have:
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2 S. S. Dragomir

∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ (1.2)

≤



[
1
4 +

(
x− a+b2

b−a

)2]
(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(α+1)
1
α

[(
x−a
b−a

)α+1

+
(
b−x
b−a

)α+1
] 1
α

× (b− a)
1
α ‖f ′‖β if f ′ ∈ Lβ [a, b] ,

1
α + 1

β = 1,

α > 1;[
1
2 +

∣∣∣x− a+b2

b−a

∣∣∣] ‖f ′‖1 ;

where ‖·‖[a,b],r (r ∈ [1,∞]) are the usual Lebesgue norms on Lr [a, b], i.e., we recall that

‖g‖[a,b],∞ := ess sup
t∈[a,b]

|g (t)|

and

‖g‖[a,b],r :=

(∫ b

a

|g (t)|r dt

) 1
r

, r ∈ [1,∞).

The constants 1
4 , 1

(p+1)
1
p

and 1
2 respectively are sharp in the sense presented in Theorem 1.1.

The above inequalities can also be obtained from the Fink result in [33] on choosing n = 1 and
performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Hölder continuous, then
one may state the result (see for instance [21] and the references therein for earlier contributions):

Theorem 1.3. Let f : [a, b]→ R be of r −H−Hölder type, i.e.,

|f (x)− f (y)| ≤ H |x− y|r , for all x, y ∈ [a, b] , (1.3)

where r ∈ (0, 1] and H > 0 are fixed. Then, for all x ∈ [a, b] , we have the inequality:∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ H

r + 1

[(
b− x
b− a

)r+1

+

(
x− a
b− a

)r+1
]

(b− a)
r
. (1.4)

The constant 1
r+1 is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following version of Ostrowski’s
inequality for Lipschitzian functions (with L instead of H) (see for instance [13])∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a)L, (1.5)
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Ostrowski type inequalities 3

where x ∈ [a, b] . Here the constant 1
4 is also best.

Moreover, if one drops the condition of the continuity of the function, and assumes that it is of
bounded variation, then the following result may be stated (see [15]).

Theorem 1.4. Assume that f : [a, b] → R is of bounded variation and denote by
b∨
a

(f) its total

variation. Then ∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f) (1.6)

for all x ∈ [a, b]. The constant 1
2 is the best possible.

If we assume more about f , i.e., f is monotonically increasing, then the inequality (1.6) may be
improved in the following manner [12] (see also the monograph [28]).

Theorem 1.5. Let f : [a, b]→ R be monotonic nondecreasing. Then for all x ∈ [a, b], we have the
inequality: ∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ (1.7)

≤ 1

b− a

{
[2x− (a+ b)] f (x) +

∫ b

a

sgn (t− x) f (t) dt

}

≤ 1

b− a
{(x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]}

≤

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[f (b)− f (a)] .

All the inequalities in (1.7) are sharp and the constant 1
2 is the best possible.

The case for the convex functions is as follows [18]:

Theorem 1.6. Let f : [a, b] ⊂ R→ R be a convex function on [a, b]. Then for any x ∈ (a, b) one
has the inequality

1

2

[
(b− x)

2
f ′+ (x)− (x− a)

2
f ′− (x)

]
(1.8)

≤
∫ b

a

f (t) dt− (b− a) f (x)

≤ 1

2

[
(b− x)

2
f ′− (b)− (x− a)

2
f ′+ (a)

]
.

The constant 1
2 is sharp in both inequalities. The second inequality also holds for x = a or x = b.

For other Ostrowski’s type inequalities for the Lebesgue integral, see [3]-[13] and [19].
Inequalities for the Riemann-Stieltjes integral may be found in [14], [16] while the generalization

for isotonic functionals was provided in [17].
For the case of functions of self-adjoint operators on complex Hilbert spaces, see the recent

monograph [20]
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4 S. S. Dragomir

1.2 The Case of Derivatives that are Convex in Modulus

In [17], the author pointed out the following identity in representing an absolutely continuous
function. Due to the fact that we use it throughout the paper we give here a short proof.

Lemma 1.7. Let f : [a, b] → R be an absolutely continuous function on [a, b] . Then for any
x ∈ [a, b] , one has the equality:

f (x) =
1

b− a

∫ b

a

f (t) dt+
1

b− a

∫ b

a

(x− t)
(∫ 1

0

f ′ [(1− λ)x+ λt] dλ

)
dt. (1.9)

Proof. For any t, x ∈ [a, b] , x 6= t, one has

f (x)− f (t)

x− t
=

1

x− t

∫ x

t

f ′ (u) du =

∫ 1

0

f ′ [(1− λ)x+ λt] dλ,

showing that

f (x) = f (t) + (x− t)
∫ 1

0

f ′ [(1− λ)x+ λt] dλ (1.10)

for any t, x ∈ [a, b] .
If we integrate (1.10) over t on [a, b] and divide by (b− a) , we deduce the desired identity

(1.9). q.e.d.

Using the above lemma the following result can be pointed out improving Ostrowski’s inequality
[4].

Theorem 1.8. Let f : [a, b] → C be an absolutely continuous function on [a, b] so that |f ′| is
convex on (a, b).

(i) If f ′ ∈ L∞[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (1.11)

≤ 1

2

1

4
+

(
x− a+b

2

b− a

)2
 (b− a) [|f ′(x)|+ ‖f ′‖∞] .

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.

(ii) If f ′ ∈ Lp[a, b], p > 1, 1p + 1
q = 1, then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (1.12)

≤ 1

2 (q + 1)
1
q

[(
b− x
b− a

)q+1

+

(
x− a
b− a

)q+1
] 1
q

(b− a)
1
q ‖|f ′(x)|+ |f ′|‖p .

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.
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Ostrowski type inequalities 5

(iii) If f ′ ∈ L1[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (1.13)

≤ 1

2

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[(b− a) |f ′(x)|+ ‖f ′‖1] .

In order to extend this result for other classes of functions, we need the following preparatory
section.

2 h-Convex Functions

2.1 Some Definitions

We recall here some concepts of convexities that are well known in the literature. Let I be an
interval in R.

Definition 2.1 ([32]). We say that f : I → R is a Godunova-Levin function or that f belongs to
the class Q (I) if f is non-negative and for all x, y ∈ I and t ∈ (0, 1) we have

f (tx+ (1− t) y) ≤ 1

t
f (x) +

1

1− t
f (y) .

Some further properties of this class of functions can be found in [24], [25], [27], [37], [40] and [41].
Among others, its has been noted that non-negative monotone and non-negative convex functions
belong to this class of functions.

Definition 2.2 ([27]). We say that a function f : I → R belongs to the class P (I) if it is
nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ f (x) + f (y) .

Obviously Q (I) contains P (I) and for applications it is important to note that also P (I)
contain all nonnegative monotone, convex and quasi convex functions, i. e. nonnegative functions
satisfying

f (tx+ (1− t) y) ≤ max {f (x) , f (y)}

for all x, y ∈ I and t ∈ [0, 1] .
For some results on P -functions see [27] and [39] while for quasi convex functions, the reader

can consult [26].

Definition 2.3 ([6]). Let s be a real number, s ∈ (0, 1]. A function f : [0,∞) → [0,∞) is said to
be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

Unauthenticated
Download Date | 2/27/18 12:35 PM



6 S. S. Dragomir

For some properties of this class of functions see [1], [2], [6], [7], [22], [23], [34], [35] and [43].
In order to unify the above concepts, S. Varošanec introduced the concept of h-convex functions

as follows.
Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and f are real non-negative

functions defined in J and I, respectively.

Definition 2.4 ([46]). Let h : J → [0,∞) with h not identical to 0. We say that f : I → [0,∞) is
an h-convex function if for all x, y ∈ I we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y)

for all t ∈ (0, 1) .

For some results concerning this class of functions see [46], [5], [36], [44], [42] and [45].

2.2 Inequalities of Hermite-Hadamard Type

In [42] the authors proved the following Hermite-Hadamard type inequality for integrable h-convex
functions.

Theorem 2.5. Assume that f : I → [0,∞) is an h-convex function, h ∈ L [0, 1] and f ∈ L [a, b]
where a, b ∈ I with a < b. Then

1

2h
(
1
2

)f (a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ [f (a) + f (b)]

∫ 1

0

h (t) dt. (HH)

If we write (HH) for h (t) = t, then we get the classical Hermite-Hadamard inequality for convex
functions.

If we write it for the case of P -type functions, i.e., h (t) = 1, then we get the inequality

1

2
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b) , (2.1)

provided f ∈ L [a, b] , that has been obtained in [27].
If f is integrable on [a, b] and Breckner s-convex on [a, b] , for s ∈ (0, 1) , then by taking h (t) = ts

in (HH) we get

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)

s+ 1
(2.2)

that was obtained in [22].
Since for the case of Godunova-Levin class of function we have h (t) = 1

t , which is not Lebesgue
integrable on (0, 1) , we cannot apply the left inequality in (HH).

We can introduce now another class of functions.

Definition 2.6. We say that the function f : I → [0,∞) is of s-Godunova-Levin type, with
s ∈ [0, 1] , if

f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) , (2.3)

for all t ∈ (0, 1) and x, y ∈ I.
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Ostrowski type inequalities 7

We observe that for s = 0 we obtain the class of P -functions while for s = 1 we obtain the class
of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-Levin functions defined on I,
then we obviously have

P (I) = Q0 (I) ⊆ Qs1 (I) ⊆ Qs2 (I) ⊆ Q1 (I) = Q (I)

for 0 ≤ s1 ≤ s2 ≤ 1.
We have the following Hermite-Hadamard type inequality.

Theorem 2.7. Assume that the function f : I → [0,∞) is of s-Godunova-Levin type, with s ∈
[0, 1). If f ∈ L [a, b] where a, b ∈ I and a < b, then

1

2s+1
f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)

1− s
. (2.4)

We notice that for s = 1 the first inequality in (2.4) still holds and was obtained for the first
time in [27].

3 Inequalities for Functions Whose Derivatives are h-Convex in
Modulus

3.1 The Case of |f ′| is h-Convex

The following result holds:

Theorem 3.1. Let f : [a, b] → C be an absolutely continuous function on [a, b] so that |f ′| is
h-convex on (a, b) with h ∈ L [0, 1].

(i) If f ′ ∈ L∞[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.1)

≤

1

4
+

(
x− a+b

2

b− a

)2
 (b− a) [|f ′(x)|+ ‖f ′‖∞]

∫ 1

0

h (t) dt.

(ii) If f ′ ∈ Lp[a, b], p > 1, 1p + 1
q = 1, then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.2)

≤ 1

(q + 1)
1
q

[(
b− x
b− a

)q+1

+

(
x− a
b− a

)q+1
] 1
q

× (b− a)
1
q ‖|f ′(x)|+ |f ′|‖p

∫ 1

0

h (t) dt.

(iii) If f ′ ∈ L1[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]
× [(b− a) |f ′(x)|+ ‖f ′‖1]

∫ 1

0

h (t) dt. (3.3)
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8 S. S. Dragomir

Proof. (i). Using (1.9) and taking the modulus, we have∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ =
1

b− a

∣∣∣∣∣
∫ b

a

∫ 1

0

(x− t) f ′ [(1− λ)x+ λt] dλdt

∣∣∣∣∣
≤ 1

b− a

∫ b

a

∫ 1

0

|x− t| |f ′ [(1− λ)x+ λt]| dλdt := K

Utilizing the h-convexity of |f ′| we have

K ≤ 1

b− a

∫ b

a

∫ 1

0

|x− t| [h (1− λ) |f ′(x)|+ h (λ) |f ′(t)|] dλdt

=
1

b− a

∫ b

a

|x− t|
[
|f ′(x)|

∫ 1

0

h (1− λ) dλ+ |f ′(t)|
∫ 1

0

h (λ) dλ

]
dt

=
1

b− a

∫ 1

0

h (λ) dλ

∫ b

a

|x− t| [|f ′(x)|+ |f ′(t)|] dt := M (x)

∫ 1

0

h (λ) dλ

≤ 1

b− a

∫ 1

0

h (λ) dλ ess sup
t∈[a,b]

[|f ′(x)|+ |f ′(t)|]
∫ b

a

|x− t| dt

=

[
(x− a)

2
+ (b− x)

2

2 (b− a)

]
[|f ′(x)|+ ‖f ′‖∞]

∫ 1

0

h (λ) dλ

=

1

4
+

(
x− a+b

2

b− a

)2
 (b− a) [|f ′(x)|+ ‖f ′‖∞]

∫ 1

0

h (λ) dλ,

for any x ∈ [a, b], and the inequality (3.1) is proved.
(ii). As above, we have∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1

b− a

∫ b

a

|x− t| [|f ′(x)|+ |f ′(t)|] dt := M (x)

∫ 1

0

h (λ) dλ.

Using Hölder’s integral inequality for p > 1, 1p + 1
q = 1, we get that

M(x) ≤ 1

b− a

(∫ b

a

|x− t|q dt

) 1
q
(∫ b

a

(|f ′(x)|+ |f ′(t)|)p dt

) 1
p

=
1

b− a

[
(b− x)

q+1
+ (x− a)

q+1

q + 1

] 1
q

‖|f ′(x)|+ |f ′|‖p

and the inequality (3.2) is proved.
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(iii). We also have that

M(x) ≤ sup
t∈[a,b]

|x− t| 1

b− a

∫ b

a

[|f ′(x)|+ |f ′(t)|] dt

=
1

b− a)
max (x− a, b− x)

[
(b− a) |f ′(x)|+

∫ b

a

|f ′(t)| dt

]

=

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[(b− a) |f ′(x)|+ ‖f ′‖1]

and the inequality (3.3) is proved. q.e.d.

The following particular case is interesting.

Corollary 3.2. With the assumptions of Theorem 3.1, we have the midpoint inequality∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.4)

≤ 1

4
(b− a)

[∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ ‖f ′‖∞

] ∫ 1

0

h (t) dt,

provided f ′ ∈ L∞[a, b].
If f ′ ∈ Lp[a, b], p > 1, 1p + 1

q = 1, then, we have,∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.5)

≤ 1

2
(b− a)

1
q

(∫ b

a

[∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ |f ′(t)|
]p
dt

) 1
p ∫ 1

0

h (t) dt.

If f ′ ∈ L1[a, b], then∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.6)

≤ 1

2

[
(b− a)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+

∫ b

a

|f ′(t)| dt

]∫ 1

0

h (t) dt.

Remark 3.3. We observe that if |f ′| is convex on (a, b), then Theorem 3.1 reduces to Theorem
1.8.

Assume that |f ′| is Breckner s-convex on [a, b] , for s ∈ (0, 1) .
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10 S. S. Dragomir

(a) If f ′ ∈ L∞[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.7)

≤ 1

s+ 1

1

4
+

(
x− a+b

2

b− a

)2
 (b− a) [|f ′(x)|+ ‖f ′‖∞] .

(aa) If f ′ ∈ Lp[a, b], p > 1, 1p + 1
q = 1, then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.8)

≤ 1

(s+ 1) (q + 1)
1
q

[(
b− x
b− a

)q+1

+

(
x− a
b− a

)q+1
] 1
q

× (b− a)
1
q ‖|f ′(x)|+ |f ′|‖p .

(aaa) If f ′ ∈ L1[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1

s+ 1

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]
× [(b− a) |f ′(x)|+ ‖f ′‖1] . (3.9)

Assume that |f ′| is of s-Godunova-Levin type, with s ∈ [0, 1).

(b) If f ′ ∈ L∞[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.10)

≤ 1

1− s

1

4
+

(
x− a+b

2

b− a

)2
 (b− a) [|f ′(x)|+ ‖f ′‖∞] .

(bb) If f ′ ∈ Lp[a, b], p > 1, 1p + 1
q = 1, then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.11)

≤ 1

(1− s) (q + 1)
1
q

[(
b− x
b− a

)q+1

+

(
x− a
b− a

)q+1
] 1
q

× (b− a)
1
q ‖|f ′(x)|+ |f ′|‖p .

(bbb) If f ′ ∈ L1[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1

1− s

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]
× [(b− a) |f ′(x)|+ ‖f ′‖1] . (3.12)
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3.2 The Case of |f ′|p is h-Convex

The following result also holds:

Theorem 3.4. Let f : [a, b] → C be an absolutely continuous function on [a, b] so that |f ′|p with
p > 1 is h-convex on (a, b) and h ∈ L [0, 1].

(i) If f ′ ∈ L∞[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.13)

≤

1

4
+

(
x− a+b

2

b− a

)2
 (b− a)×

[
|f ′(x)|p + ‖f ′‖p∞

]1/p(∫ 1

0

h (t) dt

)1/p

.

(ii) If f ′ ∈ Lp[a, b], p > 1, 1p + 1
q = 1, then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.14)

≤ (b− a)
1
q

(q + 1)
1/q

[(
b− x
b− a

)q+1

+

(
x− a
b− a

)q+1
]1/q
×
[
(b− a) |f ′ (x)|p+‖f ′‖pp

]1/p(∫ 1

0

h (t) dt

)1/p

.

(iii) If f ′ ∈ Lp[a, b], then for any x ∈ [a, b],∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]
×
∥∥|f ′ (x)|p + |f ′|p

∥∥p(∫ 1

0

h (t) dt

)1/p

(3.15)

≤

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]
×
(

(b− a) |f ′ (x)|p + ‖f ′‖pp
)1/p(∫ 1

0

h (t) dt

)1/p

.

Proof. As in the proof of Theorem 3.1 we have∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ =
1

b− a

∣∣∣∣∣
∫ b

a

∫ 1

0

(x− t) f ′ [(1− λ)x+ λt] dλdt

∣∣∣∣∣
≤ 1

b− a

∫ b

a

|x− t|
(∫ 1

0

|f ′ [(1− λ)x+ λt]| dλ
)
dt := K

for any x ∈ [a, b].
By Hölder’s integral inequality we have∫ 1

0

|f ′ [(1− λ)x+ λt]| dλ ≤
(∫ 1

0

1qdλ

)1/q (∫ 1

0

|f ′ [(1− λ)x+ λt]|p dλ
)1/p

=

(∫ 1

0

|f ′ [(1− λ)x+ λt]|p dλ
)1/p
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for any x ∈ [a, b], where 1
p + 1

q = 1, p > 1.

Since |f ′|p is h-convex on (a, b) with h ∈ L [0, 1] , then∫ 1

0

|f ′ [(1− λ)x+ λt]|p dλ ≤
[
|f ′ (x)|p + |f ′ (t)|p

] ∫ 1

0

h (λ) dλ,

for any x ∈ [a, b].
Therefore

K ≤ 1

b− a

(∫ 1

0

h (λ) dλ

)1/p ∫ b

a

|x− t|
[
|f ′ (x)|p + |f ′ (t)|p

]1/p
dt (3.16)

for any x ∈ [a, b].
(i). Now, if f ′ ∈ L∞ [a, b] then∫ b

a

|x− t|
[
|f ′ (x)|p + |f ′ (t)|p

]1/p
dt

≤ ess sup
t∈[a,b]

[
|f ′ (x)|p + |f ′ (t)|p

]1/p ∫ b

a

|x− t| dt

=
[
|f ′ (x)|p + ‖f ′‖p∞

]1/p 1

2

[
(x− a)

2
+ (b− x)

2
]

for any x ∈ [a, b], and utilizing (3.16), the inequality (3.13) is proved.
(ii). If f ′ ∈ Lp[a, b], p > 1, 1p + 1

q = 1, then by Hölder’s inequality we have∫ b

a

|x− t|
[
|f ′ (x)|p + |f ′ (t)|p

]1/p
dt

≤

(∫ b

a

|x− t|q dt

)1/q (∫ b

a

([
|f ′ (x)|p + |f ′ (t)|p

]1/p)p
dt

)1/p

=

[
(b− x)

q+1
+ (x− a)

q+1

q + 1

]1/q [
(b− a) |f ′ (x)|p + ‖f ′‖pp

]1/p
=

(b− a)
1+ 1

q

(q + 1)
1/q

[(
b− x
b− a

)q+1

+

(
x− a
b− a

)q+1
]1/q

×
[
(b− a) |f ′ (x)|p + ‖f ′‖p1

]1/p
for any x ∈ [a, b], and by (3.16) we deduce the desired inequality (3.14).
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(iii). If f ′ ∈ Lp[a, b], then by Hölder’s inequality we also have∫ b

a

|x− t|
[
|f ′ (x)|p + |f ′ (t)|p

]1/p
dt

≤ sup
t∈[a,b]

|x− t|
∫ b

a

[
|f ′ (x)|p + |f ′ (t)|p

]1/p
dt

= max {x− a, b− x}
∫ b

a

[
|f ′ (x)|p + |f ′ (t)|p

]1/p
dt

= (b− a)

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
] ∥∥|f ′ (x)|p + |f ′|p

∥∥p
≤ (b− a)

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
](∫ b

a

[
|f ′ (x)|p + |f ′ (t)|p

]
dt

)1/p

= (b− a)

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
] (

(b− a) |f ′ (x)|p + ‖f ′‖pp
)1/p

for any x ∈ [a, b]. q.e.d.

The following midpoint type inequalities are of interest.

Corollary 3.5. With the assumptions of Theorem 3.4, we have the inequality∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.17)

≤ 1

4
(b− a)

[∣∣∣∣f ′(a+ b

2

)∣∣∣∣p + ‖f ′‖p∞

]1/p(∫ 1

0

h (t) dt

)1/p

,

provided f ′ ∈ L∞[a, b].
If f ′ ∈ Lp[a, b], p > 1, 1p + 1

q = 1, then we have∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.18)

≤ 1

2 (q + 1)
1/q

(b− a)
1
q ×

[
(b− a)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣p + ‖f ′‖pp

]1/p(∫ 1

0

h (t) dt

)1/p

.
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14 S. S. Dragomir

If f ′ ∈ Lp[a, b], then∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ (3.19)

≤ 1

2

∥∥∥∥∣∣∣∣f ′(a+ b

2

)∣∣∣∣p + |f ′|p
∥∥∥∥p(∫ 1

0

h (t) dt

)1/p

≤ 1

2

(
(b− a)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣p + ‖f ′‖pp

)1/p(∫ 1

0

h (t) dt

)1/p

.

Remark 3.6. The interested reader can state the corresponding particular inequalities for different
h-convex functions. However the details are omitted.
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